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Abstract. Artificial neural systems promise 
t o  integrate symbolic and sub-symbolic 
processing to  achieve real time control of 
physical  systems. T w o  p o t e n t i a l  
alternatives exist. In one, neural nets can 
be used to front-end expert systems. The 
expert systems, in turn, are developed with 
varying degrees of parallelism, including 
their implementation in neural nets. In the 
other, rule-based reasoning and sensor 
data can be integrated wi th in  a single 
hybrid neural system. The hybrid system 
reacts as a u n i t  t o  provide decisions 
( p r o b l e m  s o l u t i o n s )  based o n  t h e  
simultaneous evaluation o f  data and rules. 

This paper discusses a model hybrid system 
based on the fuzzy cognitive map (FCM). 
The operation of the model is illustrated 
with the control of a hypothetical satellite 
that intelligently alters its attitude in space 
i n  response t o  a n  i n t e r s e c t i n g  
micrometeorite s h o wer. 

Concept. Artificial perception, cognition, 
and learning are increasingly possible by 
imitating natural information processing 
mechanisms. Information processing in 
living systems occurs in two major forms, 
genetic evolution and chemical/ electric 
cell-to-cell communication. Both of these 
natural processes are being exploited for 
what they can contribute to  artificial 
computation. The field of Computational 
Genetic Algorithms has borrowed ideas 
from natural evolutionary theory t o  

programs. Artificial Neural Systems (ANS '3 develop learning and problem-solvin 

have taken inspiration from natural 

nervous systems in order to  model the 
parallel, distributed processing of  the 
brain. These two currents of thought 
derive their power from the inherent 
parallelism of natural  solut ions t o  
information processing . 

Small, low cost information processors 
were first developed by natural living 
organisms. This tactic served developing 
life forms well for hundreds of millions of 
years. Only late in the evolutionary process 
did bundles of these small localized neural 
processors coalesce into large brains t o  
which other peripheral knots of neurons 
could report in turn. This process of natural 
develpment can be emulated in artificial 
systems by initially producing small, 
intelligent information integrating devices 
able to  categorize and classify local 
information, and which communicate and 
coordinate their state with a non-local 
decision-making center. Such devices 
would be  capable of  learning and 
reasoning, and of operating in continuous 
real-ti me. 

Given the current investment in expert 
systems, and the relative immaturity of 
neural connectionist systems and their 
learning interfaces, practical applications in 
intelligent processing enhancement wil l  
probably consist initially of expert system/ 
neural net combinations, rather than of 
neural nets alone. There are two likely 
approaches to  this near term scenario: 
symbolic expert systems with neural nets a t  
the data collection points (front ending), 
and computational systems o f  mixed 
representation that  al low the close 
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integration of concepts and rules with low- 
level data. Both of these approaches have 
relative strengths and weaknesses, but only 
the second is close to being "natural" in 
the sense discussed here. 

The first of the two approaches consists of 
the straightforward combination of an 
expert system with whatever neural net 
models are needed to provide input a t  the 
data collection points o f  the expert 
system's rule graph. In i t s  simplest form, 
the integrated program combines a 
normative expert system with selected 
ANS. Whereas the expert system typically 
queries a user or a data-base/ knowledge- 
base for information, the integrated 
program also queries, or extracts 
information from, neural nets. In this 
system, machine learning occurs a t  the sub- 
symbolic level in the neural nets. However, 
neural net input-output patterns can also 
be extracted as symbolic rules fo r  
incorporation into the expert sytem's rule 
graph as they are learned. 

The mixed representation approach 
provides for systems that allow the close 
integration of high-level concepts with 
low-level data. These systems do both the 
data collation and a degree of symbolic 
level processing as a unit. The system 
thereby behaves as a symbolic/ sub- 
symbolic hybrid. The hybrid is different 
than the first approach described above in 
that a major portion of the data hybrid is  
implemented entirely under the ANS 
paradigm. The hybrid is  different than a 
connectionist expert system in that the 
neural model does not simply replicate the 
functionality of an expert system, but is 
a imed a t  fus ing i n  rea l - t ime t h e  
information provided by sensors and 
through conceptual relationships. 

On this basis, the hybrid system's strength 
consists of the capability to  provide a fine- 
grained integration of symbolic concepts 
with sub-symbolic information. Operations 
on the two types of knowledge occur a t  the 
lowest computational level. Incomplete, 
innacurate or contradictory rules are 
buttressed by the natural fault tolerance/ 
graceful degradation of the neural 

elements, providing for automatic truth- 
maintenance support. In addition, the 
automatic translation of sub-symbolic 
representations into symbolic rules can 
occur in  the  same compu ta t i ona l  
neighborhood, such that the high level 
conceptual portion of the system learns as 
well and as easily as the neural elements 
do. 

Both of these approaches are useful in their 
own right. But, whatever approach i s  
chosen to enhance intelligent processing by 
way of neural models, i t  is important t o  
address the art and practice of neuralism as 
well as the science. Science provides 
testable ideas but does no work. Useful 
work w i l l  resul t  f r o m  real ized 
improvements in practice by way of new 
ideas. Neural models provide two basic 
beneficial improvements: conce ptua I and 
associative learning from sub-symbolic 
i n f o rmat io n , and si mu ltaneo us processing 
activity. The first of these will be important 
over the long run in addressing the  
knowledge acquisition and maintenance 
bottleneck. The second is o f  more 
immediate re levance. 

The standout value o f  connectionist 
systems is going to be in harnessing parallel 
behavior. It is important, therefore, t o  look 
to eventual hardware implementations of 
chosen neural models in order to  provide 
this parallelism. Without a hardware 
realization, the often-used signal Hebb law 
is basically another algorithm, of the many 
excellent ones available. New algorithms 
may or may not be better than those that 
came before, depending on the problem to 
which they are applied. For example, some 
comparative studies have shown that  
neural emulation algorithms can b e  
inferior to the methods they were devised 
t o  replace (Taber and Deich 1988).  
However, it is worth remembering that 
these and nearly all other software 
programs are currently designed to run on 
von Neumann computers. The real power 
of connectionist models wi l l  ultimately 
result from providing an escape from such 
serial machines. 
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O f  t h e  t w o  prac t ica l  approaches t o  
i n t e l l i g e n t  process ing e n h a n c e m e n t  
ment ioned in this section, t h e  hyb r id  ' approach was selected to test the potential 

' o f  in te rming l ing  da ta  w i t h  rules in a 
compact modular fashion. I t  was chosen 
because i t s  des ign can be  smal l  a n d  
straightforward, because it can integrate 
data and rules in a fine-grained fashion, 
and because it has 'more potent ia l  f o r  
p r o v i d i n g  these  f e a t u r e s  in a fast ,  
ded ica ted ,  n e u r a l  dev ice  t h a n  m o r e  
co m p I ex schemes. 

To summarize this section, the  concept that  
d r ives  this i n v e s t i g a t i o n  i s  t h a t  o f  
i n teg ra t i ng  rules a n d  da ta  in a f i ne -  
grained , mod u I a r processing en vi ron men t 
tha t  has the  potential of being realized in  
highly parallel "neural"  hardware. An 
a p p r o a c h  t h a t  w i l l  c o - l o c a t e  these  
integrating elements was chosen over one 
tha t  would compartmentalize them. 

The Science. The model selected for initial 
investigations o f  t he  concept problem i s  
t h e  fuzzy cogni t ive map  (FCM) (Kosko 
1988). The FCM is  based on well  known 
equations, and features input  f rom fuzzy 
set theory,  p rov id ing  f o r  an  i nhe ren t  
credibility meaure on i t s  output.  Its expert 
system c a p a b i l i t i e s  h a v e  a lso b e e n  
demonstrated (Taber and Siege1 1987). 

The FCM i s  a single layer net  f r o m  t h e  
family of unsupervised learning - feedback 
recal l  neura l  models .  I t  can encode 
arbitrary patterns 

Ak = (aik ,.-. ,ank), k = 1,2,...,m, 
using e i ther  hardwi red  o r  d i f f e ren t i a l  
Hebbian l ea rn ing  (Kosko 1986). The 
topology is shown in Fig. 1. 

Hardwired encoding requires t h a t  t h e  
c o n n e c t i o n  s t r e n g t h s  b e  i n i t i a l l y  
d e t e r m i n e d  o f f - l i n e  a n d  se lec t ive ly  
assigned. This encoding can be used t o  
represent the  symbolic concepts and the  
relationships among them. Signed values 
are provided in the  range [-1 ... 11 to each 
lateral (synaptic) connection, where fuzzy 
positive values represent causal increase, 
fuzzy negative values represent causal 

t t t 

t t t 
Fig. 1. The topology of the fuzzy cognitive map, 
(FCM). Input, ouput, and lateral connections are 
shown. The single layer Fa processing element array 
consists of neurons a1 through a,. 

decrease, and zero represents n o  causal 
connection. In the basic model, once the  
causal values are assigned, they are not 
expected t o  change without fur ther  off- 
l ine intervention. 

Adaptive encoding requires tha t  the  neural 
map automatically infer t h e  connect ion 
values be tween  pa t te rns  (da ta) ,  a n d  
between patterns and concepts, using 
d i f f e r e n t i a l  H e b b i a n  l e a r n i n g .  T h e  
learning algorithm correlates changes in 
processi n g e I emen t (neu ra I) activations, 
such that only changes in activity in t h e  
same direction (either both increasing o r  
both decreasing) will affect the  connection 
(synaptic) weights. This activity is called 
concomitant var iat ion.  The e n c o d i n g  
equation is  

where Wij is the connection stren th  f rom 

i th a n d  j t h  componen ts  o f  t h e  k t h  
inference vector Ak or  alternatively t h e  
activation levels of the ith and jth neurons, 
and dS()/dt i s  t h e  t ime  der ivat ive of a 
sigmoid function. The first te rm in t h e  
equation is passive decay and the  second 
term is the differential Hebbian correlation 
term. 

the  ith t o  the j t h  neuron, aik and aj a are the  

For recall, the additive STM (Short Term 
Memory) recall equation was chosen over 
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the more general additive recall equation 
for simplicity's sake. It is of the form 

0 

ai = -bai + SUM",=, S(aj)Wji + Ii 

where Ii is the ith component of the initial 
inference state or the ith data value. The 
first term in the equation is passive decay, 
the second term is lateral feedback, and 
the last term is external input. 

Except for the fact that the FCM utilizes the 
differential rather than the signal Hebbian, 
i t s  topology and function are nearly 
identical to the Additive Grossberg (AG) 
model. The AG is the simplest of a family of 
neural models culminating in the ART2 
system. Given that ART2 is basically an 
evolved AG, this suggests a migration path 
for the FCM. 

When encoded with concepts that are 
highly inter-related, the F C M  does not 
exhibit stable point behavior, but exhibits 
oscillatory or limit cycle behavior instead. 
Limit cycles consist of two or more unique 
sets of neurons being repeatedly activated. 
The dynamics of the FCM are amenable to 
l imit cycle stability analysis given a 
derivation of the Lyapunov energy function 
(Simpson 1988). In practice, wi th no 
further external input the activation cycle 
soon decays as the network becomes de- 
energized. 

The Art. No working neural network 
emulation program can be produced solely 
and directly from the formulas given 
above. As a working FCM model was 
developed by the author based on these 
equations, it is helpful to see how this was 
done. 

The first issue is the choice of sigmoid 
function, The following function was 
found to produce satisfactory results 

Si = 1 / ( I  + e-al) 

where ai is the activation of the ith neuron. 
When incorporated into the encoding 
equation, the following algorithm results 

Wi' = Wij + (((Si * ( I  - Si)) * owi.) * i(sj * (1  - Sj)) * Dwji)) - (wij * d) 
where Wij is the synaptic strength from the 
ith to the j th neuron, Owij is the change in 
Wij over the last unit time period, and d i s  a 
decay term. 

Another issue is the training method. As, 
under training, encoded .patterns that are 
not continuously reinforced tend to decay, 
it is preferable to present the patterns in an 
interleaved fashion rather than in batch 
mode. If patterns a, b, and c are in the 
training set, they are input for encoding as 
a,b,c,a,b,c,a,b,c ra ther  than  as  
a,a,a, b, b,b,c,c,c. Furthermore, unless the 
synaptic connections affecting a, b, and c 
are clamped after training, to train on a 
fur ther pat tern d wou ld  requ i re  
resurrecting these earlier patterns for 
training as well. 

Decay terms must also be set. Too great a 
rate of decay and the neural net never 
develops enough energy t o  ac t i va te  
categorizing neurons or to fire rules. Too 
low a rate of decay and the neural net 
becomes overheated, activating and firing 
any number of neurons that bear only a 
weak relationship to the knowledge being 
recalled. In practice it was found that 
decay factors in the range of 0.1 to  0.2 
were most suitable. 

As training is  mediated by a sigmoid 
function, synaptic weights eventually 
approach asymptotic values. It is  often the 
practice to stop training when the rate of 
change of a weight falls below an arbitrary 
value, E. The results reported later in this 
paper were achieved with an E of 0.001. 

To simulate simultaneous updating of  
synaptic and activation values (simulated 
parallel behavior), the new values and new 
delta values are found for the entire neural 
network before the updating of any 
neurons or synaptic connections occurs. 
This keeps the neurons from affecting one 
another until the entire network is  ready to 
move. In contrast t o  "instantaneous" 
updating, spreading activation would 
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Concepts are elicited, and the relationships 
between them set. For examde. i f  the 

Fig. 2. The outline of a model neural net in 
computer memory. Dispersed data patterns (left) 
are mapped to concept neurons (right). Fuzzy rules 
are represented by the inter-relation of concepts. 

produce different and less predictable 
a c t i v i t y  in  the network.  Al though 
spreading activation is  a valid approach 
and i s  sometimes used, it was no t  
implemented in this study. 

Finally, using a discrete, serial algorithm to 
simulate the passage of time is  no more 
than declaring each iteration of  the 
network (a single training or activation 
pass) to  be a time "unit". The change in 
synaptic wei ht or in neural activation is 

the equations in the previous section. The 
time derivative value is this delta value, 
with respect to a single iterative time unit. 

represented 1 y a delta value, as found by 

Operation. The operation of the above 
system is fairly straightforward. A network 
of processing elements or neurons i s  
mapped out and cast in computer memory. 
A certain predetermined portion is  then set 
aside for the data driven elements. Data 
elements can be visualized as occupying 
this space from top t o  bottom. The 
remainded of the network is reserved for 
concepts and rules (Fig. 2). 

All neurons are initialized to a base or 
resting activation state of zero. A vigilance 
parameter i s  set to  detect neurons with 
significant activity, the level of significance 
being given by the vigilance value. 

concept audible snarl (ai) is thought to be 
twice as important as the concept fanps (aj) 
in implying the concept wave biq stick (ah), 
then Wih becomes + 0.66 and w.h i s  + 0.33. 
The available range of values [ - I  ... 1) allows 
for fuzzy adjustments to this rule as long as 
the rat io o f  W i h  t o  Wjh .  re,mains 
approximately 2: 1 or whatever it i s  judged 
to be. 

Once set, these weights are clamped while 
the net as a whole is trained on data sets. 
Training is  achieved by presenting an 
"analog" input pattern to tne net while 
simultaneously turning one or more of the 
concepts cells on. The "analog" input 
consists of a dispersion of data points that 
take on real values in [-1 ... 11 such that a 
pattern i s  created. This pattern i s  then 
mapped (input) t o  the corresponding 
neurons in the net. Act ivated pattern 
neurons reinforce their relationship t o  
various degrees with the firing concept 
neruons, until the rate of change fal ls 
below E. This operation completes the 
l inking of concept neurons t o  data 
neurons. 

After training, many of  the concept 
neurons may be thickly connected t o  
dispersed areas of the data portion of the 
neural map. However, some of the concept 
neurons may only be connected to other 
such neurons and not a t  all to data cells. 
These neurons can be activated directly by 
conceptual input if they are input cells, but 
only indirectly by data  acting through 
other concept neurons if they are not. 

During recall, input occurs to various neural 
elements in the network. Typically, a 
continuous and changing (time variant) 
"analog" data pattern is read into the net, 
whi le certain concepts may be 
simultaneously turned on or off. Settling 
of the network occurs continuously as input 
is read in. This activity is represented in Fig. 
3, where both types of input are shown. 

Reporting neurons can be of various types, 
depending on how the neural net was 
trained. Some models, such as the AG, 
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Fig. 3. Recall input to a model neural net. Concept 
neurons are either switched on or off, the activity of 
a data neuron fluctuates as real input data arrives at 
the system. 

utilize a winner-take-all approach (a max 
function) to  select the one cell whose 
output will be recognized. The system 
described here currently uses a vigilance 
threshold to detect all firing neurons over 
that threshold. 

Test programs have been run on a Sun-3 
workstation with enough memory to load a 
mediu m-sized u n iversa Ily interconnected 
net, but with no floating-point hardware. 
Speeds o f  approximately 1 2 K  I P S  
(interconnects per second) were achieved 
on an unloaded station. 

Results. The system just described has been 
exercised via a test program based on a 
hypothetical space vehicle problem. The 
devised task is  to orient an object in space 
such that  opt imal mission-sensitive 
behaviors can be maintained. To simplify 
things, the problem space was reduced to 
the object's purported vulnerability to  
particle bombardment, without regard to 
type or source. The problem space consists 
of a few identifiable surface structures on 
the object, a few internal operational 
characteristics, and a surface mapping of 
the object's "skin", with sufficient sensors 
t o  detect arriving particles such as 
micrometeorites. It should be possible 
under this scenario to  train a neural 
module of the type discussed here to  
"recognize" vulnerable portions of i t s  
host's surface, to rank these areas in order 
of importance, and to offer suggestions as 
to appropriate orientational responses for 
any given micro-impact situation. If we 

recall the underlying thesis of this study, 
that of hardware realizability, the above 
response should realistically occur in  
nanosecond time frames. 

The test set for which the results are 
presented below was based on a small rule 
set and the following concepts: power 
(available, unavailable), mission critical 
co m rn u n ica t io ns (occu ring , not o ccu r i n g ) , 
and the sensitive surface structures camera 
lens, receiving antenna, and solar cell array. 
These concepts and the relationships 
among them were knowledge engineered 
into the system (as described in the section 
Operation). Following this, the system was 
trained to recognize the surface structures 
by turning on concepts while the "sensor" - 
neural net component was "bombarded" 
with time and space variant real-valued 
impact patterns. In such an artificial 
situation care was taken to ensure that the 
bombardment was not  random, bu t  
massed on certain areas of the  sensor 
(data) component of the neural system. In 
this way, learning could occur. 

Once the system was trained, test recall 
could be performed. Fig. 4 presents the 
results of one such test. An initial single 
spike was delivered to the system a t  time 
t = 0 centered on, but not coincident with, 

t=O t -> 

Fig. 4. The results of activating a model neural net. 
An activation spike a energizes cells that have been 
trained to a concept c (eu) and cells that have not 
(uu). The response cell r is activated as a result of 
rule firing within the system. T represents the 
activation (A) threshold, t is time. The figure is to 
scale, units are not shown. 
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one of the surface structures, camera. The 
activated neurons that represent this area 
of the net begin to immediately decay, the 
cells trained on the camera falling off more 
slowly than those that are not. Soon, the 
concept neuron representing the target 
concept, camera, is activated, and crests 
just slightly over the threshold. Almost as 
quickly the attached rule fires, provoking 
the response neuron r to activate. Within a 
100 or so time iterations, most activity has 
subsided below threshold, and the system 
returns to i t s  normal resting state. 

In another test, input was provided over a 
period of time rather than as a single 
event. The results were similar to those 
above except that as more energy was 
being input to the system, the vigilance 
threshold had to be raised to mask the 
a c t i v i t y  o f  neurons f i red  by weak 
intermediate connections (rules) in the 
system. 

The above tests were performed with input 
concepts switched off. Tests run with an 
input neuron switched on also produced 
expected results- the appropriate rules 
fired and the correct response (asserted) 
neurons reported output. However, the 
time when the concept input neuron was 
switched was important. If switched on too 
early or too long, the neural system 
became energized around this neuron, 
such that the system became overly 
sensitive to rules that had this neuron as a 
component. If it was switched on too late 
or not long enough, the relevant rule 
would not fire. One way to adjust for this 
observed behavior i s  to  reconfigure the 
rule(s) or the decay rate to conform to the 
desired level of sensitivity. 

In summary, the results show that it i s  
possible to integrate data and rules in a 
single neural net and achieve expected 
outputs. Given the small scale of these 
tests, however, the real problem of scaling 
the system to operational sizes remains 
unanswered. There are two issues that 
have a bearing on the question of  
scalability, and they are addressed in the 
next section. 

Conclusions and Forecast. The evidence, 
albeit preliminary, seems to suggest that 
the implementation of  the problem 
concept put forward in this paper i s  
feasible. Pattern recognition and some 
other forms of  sub-symbolic data 
processing are well known strengths of 
neural networks. And, there is enough 
experience with heuristic processing to feel 
comfortable with small sets of rules that 
can be easily understood by one person. 
Bringing them together in some fashion 
should draw from the strengths of both 
without incurring any o f  the major 
problems of either. 

The issue of scalability is  a factor, however. 
If necessary, scaling up may be done 
uniformly, by merely extending the neural 
model to ever greater numbers of neurons 
and IV's (interconnect values). Or, growth 
can be achieved through a system of inter- 
related, interconnected subcomponents, 
which need not be similar to one another. 

For the moment, neural processors can be 
kept tractable and the major problems just 
alluded to kept to a minimum by targeting 
projects of moderate scale. If a target 
device is  task oriented, data mappin 
be of a predetermined size and kin 8 that will 
reduces the eventual complexity and hence 
the size of the neural architectural model. 

Two issues that bear on ultimate size are 
both derived from the expert system 
experience. Because of the well known 
cost o f  knowledge acquisit ion and 
management (getting it, maintaining it, 
and ensuring that it continues to  work 
right), rules are best kept to a small stable 
set, particularly in environments that are 
not highly human being interactive. And, if 
fast, compact, easily understood, task- 
oriented modular systems are desireable, i t  
does not make sense to engineer a huge 
number of rules. Large knowledge based 
systems are not fast, and they are certainly 
not compact. 

By limiting the system to a small size, 
however, something must be bought in 
exchange. What this may be i s  the  
possibility of focusing the selected model 
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on a simple, well defined task, such that 
the system’s overall operation can be 
optimized. 

Eventually it may be possible to build large 
neural systems and t o  create bushy 
architectures o f  symbols and the i r  
re1 a t  ions h i ps t h roug h nat u ra I, su b-sy m bo I i c 
learning. Until then, there is some promise 
that these capabilities can be provided in a 
small, focused manner in fast, compact, 
task-driven neural modules. 
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